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The Ornstein-Zernike equation is applied to nematic colloids with up-down symmetry to determine how the
electrostatic analogy and other phenomenological results appear in molecular theory. In contrast to phenom-
enological approaches, the molecular theory does not assume particular boundary conditions �anchoring� at
colloidal surfaces. For our molecular parameters the resulting anchoring appears to be realistic, neither rigid
nor infinitely weak. For this case, the effective force between a colloidal pair at large separation remains
essentially constant over the entire region of nematic stability. We show that a simple van der Waals approxi-
mation gives a potential of mean force that in some important aspects is similar to the phenomenological
results obtained in the limit of weak anchoring; at large separations the potential varies as �8, where � is the
colloidal diameter. In contrast, the more sophisticated mean spherical approximation yields a �6 dependence
consistent with phenomenological calculations employing rigid boundary conditions. We show that taking
proper account of the correlation �or magnetic coherence� length � inherent in the nematic sample is essential
in an analysis of the � dependence. At infinite � the leading � dependence is �6, but this shifts to �8 when �

is finite. The correlation length also influences the orientational behavior of the effective interaction. The
so-called quadrupole interaction that determines the long-range behavior at infinite � transforms into a super-
position of screened “multipoles” when � is finite. The basic approach employed in this paper can be readily
applied to a broad range of physically interesting systems. These include patterned and nonspherical colloids,
colloids trapped at interfaces, and nematic fluids in confined geometries such as droplets.
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I. INTRODUCTION

Colloidal particles immersed in nematic fluids experience
effective long-range interactions which can result in a variety
of interesting spatial ordering of the colloidal particles �1�.
These interactions result from colloid-induced distortions of
the nematic order, and have been mainly described in the
framework of phenomenological elastic theories, which ad-
dress the director distribution around a single colloidal par-
ticle. This approach is expected to be relevant at distances
that are long compared to the size of the colloidal particles.
Note that by “effective” interaction we mean the change in
free energy when the center-center distance of a pair of col-
loidal particles is moved from infinity to R. This effective
interaction is also called the potential of mean force.

Most theoretical treatments are consistent in that the par-
ticular symmetry of the director field configuration about a
single colloidal particle defines the effective intercolloidal
interaction. So-called dipole configurations, where up-down
symmetry with respect to the director is broken, result in the
formation of colloidal chains along the bulk director. In con-
trast, quadrupole configurations lead to repulsive forces both
along and perpendicular to the bulk director, with the maxi-
mum attraction occurring when the intercolloidal vector is at
an angle of 49° with respect to the director. Phenomenologi-
cal theories predict the asymptotic distance dependence of
the effective potentials. These are 1 /R5 in the quadrupole
configuration �2–4�, and 1 /R3 in the dipole case �4�. Direct
measurements of intercolloidal forces confirm these predic-
tions at sufficiently large R �5–7�. However, the predicted
dependence of the effective interactions on temperature and

on the colloidal diameter � can strongly depend on theoret-
ical assumptions. Theories that impose weak boundary con-
ditions at colloidal surfaces �3� predict the interaction of col-
loidal pairs with up-down symmetry to be proportional to
V2�8 /K, where K is the nematic elastic constant and V is the
phenomenological anchoring energy. Given that experiments
�8� indicate that V does not change with the temperature in
the stable nematic regime, this result implies that the effec-
tive interactions will decrease as the temperature decreases
�K increases�. Another approach due to Ramaswamy et al.
�2� and Lubensky et al. �4� is based on rigid boundary con-
ditions and predicts interactions behaving as �6K. This not
only implies a different � dependence, but also suggests that
the effective colloidal interactions will become stronger as
the temperature is decreased, in contrast to the result noted
above. At present the dependence on temperature and/or col-
loidal diameter has not been determined experimentally.

In this paper we investigate asymptotic interactions in
nematics colloids from a molecular perspective. We focus on
how different asymptotes can be obtained employing corre-
lation function theory. We note that correlation functions do
not frequently appear in the phenomenological theory of liq-
uid crystals, and that long-range phenomena are not com-
monly isolated in molecular approaches. It is clear that, if
one wishes to bridge the gap between phenomenological and
molecular pictures, it should be done at the level of
asymptotic behavior where both approaches are directly
comparable. Bridging this gap is one of the objectives of this
paper.
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We have suggested �9,10�, that nematic colloids can be
usefully investigated by employing integral equation meth-
ods that have been widely used in the theory of isotropic
fluids, but only recently applied to anisotropic systems
�11–14�. This approach begins at the level of molecular in-
teractions modeled in physically relevant way. It is statistical
mechanical in nature and rests on the Ornstein-Zernike �OZ�
and Lovett equations for the pair and singlet distribution
functions. The present work follows the same general ap-
proach, but focuses on analytical extraction of the long-range
behavior of colloid-nematic and, particularly, colloid-colloid
correlation functions. These in turn are used to obtain effec-
tive long-range interactions, which are directly comparable
with phenomenological expressions.

The remainder of this paper is divided into five parts. The
general approach is described in Sec. II, long-range correla-
tions in the bulk nematic are discussed in Sec. III, nematic-
colloid and colloid-colloid asymptotes at zero field are ob-
tained in Sec. IV, and finite-field effects are considered in
Sec. V. Finally our conclusions are summarized in Sec. VI.

II. GENERAL APPROACH

The equilibrium pair correlation functions for nematic
colloids can be found by solving the OZ relationship

h���1,2� = c���1,2� + �
�=C,N

� c���1,3����3�h���3,2�d�3� ,

�1�

where c�� and h�� are the direct and total pair correlation
functions, �N�3� and �C�3� are the density distributions of the
nematic �N� and colloidal �C� components, and �,� represent
C or N. For a nematogen, the label 1 denotes �R1 ,�̂1�, and
for a spherical colloid 1��R1�. Equation �1� is combined
with the exact Lovett equation that relates the direct pair
correlation functions to the singlet densities �15�. The exact
OZ equation must be solved in conjunction with another,
approximate expression relating the total and direct correla-
tion functions, such as the hypernetted chain �HNC� or mean
spherical approximation �MSA� closures. The properties of
different closures have been investigated in the theory of
simple fluids. The model employed, the quantities of particu-
lar interest, as well as the difficulty of solution, influence the
choice of closure for specific calculations. Properties such as
order parameters, elastic constants �16�, etc. can be calcu-
lated using the correlation functions.

For a system infinitely dilute in colloidal particles ��C
→0�, the OZ equation becomes

h���1,2� = c���1,2� +� c�N�1,3��N�3�hN��3,2�d�3� .

�2�

Here, �N��̂� gives the orientational distribution in a pure
nematic, and �N�1��1+hNC�1,2�� describes the distribution
of nematic fluid about a colloidal particle. The latter function
takes into account changes at a given point R1 induced by the
colloidal particle at R2, including changes in local density

and in the orientational distribution of the nematic fluid.
Here we are interested in the colloid-colloid potential of
mean force, which at the HNC level �17� is given by

�CC�1,2� = �−1�cCC�1,2� − hCC�1,2�� + vCC�1,2� , �3�

where vCC�1,2� is the direct pair interaction between the
colloidal particles, and �=1 /kBT, kB being the Boltzmann
constant and T the absolute temperature.

As in earlier work �13,14,18�, we consider a model con-
sisting of uniaxial nematogens interacting through a pair po-
tential taken to be the sum of a hard-sphere interaction
�sphere diameter 	� and an anisotropic part defined by

v�1,2� = v2�R12�P2��̂1 · �̂2� , �4�

v2�R12� = − AN�zN	�2exp�− zNR12�
R12/	

, �5�

where P2��̂1 ·�̂2� is the second-order Legendre polynomial,
R12 is the center-center distance, the unit vector �̂i denotes
the orientation of particle i, and AN and zN are the energy and
the length parameters characterizing the interaction. The
nematogen interaction with an external field is given by

vN�1� = − W�5P2��̂1 · n̂�, W 
 0, �6�

where W is the field strength. This interaction orders the bulk
director n̂ parallel to the field.

The OZ-Lovett equations for this model have been solved
analytically in the MSA �13,14�. The model considered is
relatively simple to allow analytical solutions to be obtained.
However, it captures the main terms in the molecular inter-
actions present in all nematogens, and we would expect the
results to be quite general. As with many real substances, this
model does not give smectic or columnar phases. Also, all
three elastic constants of the model are equal, whereas ex-
perimentally elastic constants differ typically by a factor of
1–2, with the twist constant being the largest for diskotic and
the smallest for calamitic �rodlike� molecules. Nevertheless,
the single-constant assumption is usual in experimental
analysis, unless smectic or columnar phases are being stud-
ied. Also, in phenomenology the single-constant formalism is
considered to be a valuable tool, yielding insight into distor-
tions in nematics �see Ref. �19�, p. 104�. Moreover, the in-
teresting properties of effective colloidal interactions in nem-
atics appear to be obtainable within the single-constant
assumption.

The model colloidal particles are taken to be hard spheres
of diameter �. Other direct colloid-colloid interactions could
easily be included through the vCC�1,2� term in Eq. �3�. The
interaction of nematogens with the surface of a colloidal par-
ticle is modeled as
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vCN�1,2� = 	� if s12 � 	/2,

− AC exp�− zC�s12 − 	/2��P2��̂1 · ŝ12� if s12 
 	/2,

 �7�

where s12 is a vector connecting the nearest point of the
surface of colloid 1 with the center of nematogen 2, and
ŝ12=s12 /s12. Note that positive and negative values of AC
favor, respectively, perpendicular and parallel orientations of
nematogen molecules with respect to the surface. For zC	
=1 the colloid-nematogen interaction range is of the order of
the nematogen “length.” The strength of the colloid-
nematogen interaction is determined by AC and zC, and will
vary for different surfactants. The magnitude of AC depends
on the surfactant concentration on the colloidal surfaces.

For micrometer and submicrometer colloidal particles, we
have suggested an ansatz �20�, namely, that the direct corre-
lation function cCN�1,2� can be taken from the wall-nematic
solution. This avoids having to solve Eq. �2� numerically for
particular colloidal particles. We have found this to be a good
approximation because the wall-nematic direct correlation
function is short ranged outside the surface and rapidly tends
to a constant on the inside, and thus is not very sensitive to
surface curvature. This ansatz is convenient because within
the MSA the wall-nematic direct correlation function can be
obtained in explicit form �20�. This permits calculation of the
density and orientational profiles �9� and effective colloid-
colloid interactions �10�. Our earlier analytical solution
�20,21� for a nematic in contact with tilted walls was ob-
tained in the presence of an external field, which establishes
a well-defined boundary condition at infinity. Infinitely far
from the wall the director is constrained to be parallel to the
field for all wall orientations. This boundary condition also
holds for spherical colloids.

If we choose a coordinate system such that the z axis is
parallel to the director n̂, the direct correlation functions ob-
tained in the MSA can be expressed as spherical harmonic
expansions

cNN�R12,�̂1,�̂2� = �
ll�=0,2

�
m

cll�m
NN �R12�Ylm��̂1�Yl�m

� ��̂2� ,

�8�

cCN�R12,�̂2� = �
ll�=0,2

�
m

cll�m
CN �R12�Ylm�R̂12�Yl�m

� ��̂2� , �9�

cNC��̂1,R12� = �
ll�=0,2

�
m

cll�m
NC �R12�Ylm��̂1�Yl�m

� �R̂12� ,

�10�

where �m� l , l�. Since all functions are real and invariant
under the formal simultaneous interchange of both coordi-
nates and species, fCN�1,2�= fNC�2,1�, cll�m

CN �R12�
= �−1�lcl�lm

NC �R12� under the convention that Ylm
� =Yl−m. At the

HNC level, the potential of mean force for a pair of colloidal
particles has the form

− ��CC�1,2� = hCC�1,2� − cCC�1,2� = �
l=0,2,4

f l
CC�R12�Yl0�R̂12� .

�11�

The total correlation functions hNN and hCN have the same
structure as Eqs. �8� and �9�, respectively.

Any function of R,

f�. . . ,R� = �
l=0,m

�

f lm�R�Ylm�R̂� , �12�

can be presented in k space as

f�. . . ,k� = �
l=0,m

�

f lm�k�Ylm�k̂� , �13�

in terms of Hankel transforms

f lm�k� = 4�il�
0

�

dR R2jl�kR�f lm�R� , �14�

f lm�R� =
4�

�2��3 �− i�l�
0

�

dk k2jl�kR�f lm�k� . �15�

Fourier transforms of the correlation functions can be written
as �22�

cNN�k,�̂1,�̂2� = �
ll�=0,2

�
m

cll�m
NN �k�Ylm��̂1�Yl�m

� ��̂2� ,

�16�

cCN�k,�̂2� = �
ll�=0,2

�
m

cll�m
CN �k�Ylm�k̂�Yl�m

� ��̂2� , �17�

− ��CC�k� = �
l=0,2,4

f l
CC�k�Yl0�k̂� . �18�

Taking account of Eq. �2� in k space and expansions �8� and
�9�, ��CC�k� becomes

− ��CC�k� = �
ll�=0,2

�
LL�=0,2

�
m

clLm
CN �k�

��YLm��̂�YL�m
� ��̂��hL�l�m

NC �k�Ylm�k̂�Yl�m
� �k̂�

= �
ll�

�
m

�hll�m
CC �k� − cll�m

CC �k��Ylm�k̂�Yl�m
� �k̂� ,

�19�

where �¯�=�fN��̂��¯�d�̂, and fN��̂1�=�N�1� /�N. Note

that Ylm�k̂�Yl�m
� �k̂� can always be expressed as a sum of

Yl0�k̂� in order to rewrite Eq. �19� in terms of f l
CC�k�. Due to
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the axial symmetry, Eqs. �2� are factored for different m, and
the asymptotes connected with elastic behavior are deter-
mined by the OZ relations among harmonics with m= �1.

In k space these are

h221
NN �k� = c221

NN �k� + c221
NN �k��N��Y21�2�h221

NN �k� , �20�

h221
CN �k� = c221

CN �k� + c221
CN �k��N��Y21�2�h221

NN �k�

= c221
CN �k� + h221

CN �k��N��Y21�2�c221
NN �k� , �21�

h221
CC �k� − c221

CC �k� = c221
CN �k��N��Y21�2�h221

NC �k� . �22�

Note that h221
�� �k�=h22−1

�� �k�, since the correlation functions
are real.

In the following sections we analyze Eqs. �20�–�22� in
order to obtain asymptotes of different correlation functions
in nematic colloids, and discuss their connection with phe-
nomenological results.

III. LONG-RANGE CORRELATIONS IN THE BULK
NEMATIC

The solution of the MSA combined with the Lovett equa-
tion for the bulk nematic is given in Ref. �14�. Here we focus
on the long-range behavior of the bulk pair correlation func-
tion. It is the behavior of this bulk function that underlies the
long-range, electrostaticlike behavior of the colloid-nematic
and colloid-colloid correlation functions.

From Ref. �14� �see Eqs. �2.9��, the single-particle bulk
distribution is given by

fN��̂� = const � exp�AY20�w�� where A = �Y20�/��Y21�2�,

�23�

and one also has the relationship

1 − �N��Y21�2�c221
NN �k = 0� = �W/A . �24�

It follows from Eq. �20� that

h221
NN �k� = c221

NN �k�/�1 − �N��Y21�2�c221
NN �k�� . �25�

Taking Eq. �24� into account and expanding the denominator
of Eq. �25� about k=0, we obtain

1 − �N��Y21�2�c221
NN �k� →

k→0
�W/A

+ k2�N��Y21�2�

4�

6
� c221

NN �R�R4dR

+ O�k4� . �26�

This can be rewritten as

1 − �N��Y21�2�c221
NN �k� →

k→0
�W/A + k2B2 + O�k4� , �27�

where

B2 =
��Y21�2��K

15�NS2
2 , �28�

the elastic constant K is given by the exact expression �16�

�K = 10��N
2 S2

2� c221
NN �R�R4dR , �29�

and S2= �Y20� /�5 is the order parameter.
Noting that the inverse zeroth-order Hankel transform of

1 / �k2+x2� is exp�−xR� /4�R, Eqs. �25� and �27� yield

h221
NN �R� →

R→�

C
exp�− R/��

R
, �30�

where the decay length

� =� K

W�NS23�5
, �31�

and the prefactor

C = �4��NB2��Y21�2��−1 = 3A2�4��K�−1. �32�

The expressions given above depend on the fact that we have
assumed a separable potential with expansions truncated as
in Eqs. �8� and �9�. Apart from these assumptions, there is no
model dependence.

Explicit expressions for the model defined by Eqs. �4�–�6�
can be found in Ref. �13�, and here we simply mention some
results in terms of the molecular parameters that are useful
for the present discussion. For our model at zero field,
�AN���Y21�2� is a function of zN	 only �see Eq. �3.15� of
�13��, and B= ���zN	�2+1+1� / �2zN� �23�. Then, Eq. �32� im-
plies that h221

NN �R→�� varies as � at zero external field, and
the model elastic constant is proportional to ��NS2�2. The
generalization for the case of finite external fields can be
done following Ref. �14�. For instance, the model-dependent
relationships given above hold for sufficiently small fields
��W /A�1�, which is the case of interest here. Thus, for
small fields the correlation length takes the form

� = B� A

�W
=

1

2zN

� A

�W
���zN	�2 + 1 + 1� . �33�

Noting that A lies in the range 1–10 for a stable nematic, for
�W=10−3–10−4 and zN	=1, we estimate � to vary from tens
to hundreds of nanometers for a typical nematogen �length in
the nanometer range�.

At sufficiently small fields, the asymptote of the complete
total correlation is defined by harmonics with �m�=1. Thus,
one has

hNN�1,2� →
R→�

C�Y21��̂1�Y21
� ��̂2� + c.c.�

exp�− R/��
R

,

�34�

where c.c. denotes the complex conjugate of the first term
within the square brackets.

It is possible to connect the relationships given above to
more familiar phenomenological expressions �19�. It can be
shown that � is analogous to the magnetic �electric� coher-
ence length in phenomenological theories. For a nonpolar
nematogen, W and the local electric field intensity E are
related by ��E2=3�5W, where �� is the anisotropy of the
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molecular polarizability. Employing the simple approxima-
tion for the dielectric anisotropy, ��=�NS2��, yields the fa-
miliar expression

� =� K

��

1

E
, �35�

for the electric �magnetic� coherence length �19�.
Next consider correlations of the director fluctuations

�nx�1�nx�2�kBT =� w1xw1zw2xw2z

S2
2 F2

NN�1,2�d�̂1d�̂2,

�36�

where �nx�1�nx�2� is an element of the susceptibility matrix
as defined in �24�, �̂i is a unit vector along the molecular
orientation, and F2

NN�1,2� is the two-particle distribution
function

F2
NN�1,2� = fN��̂1��1 + hNN�1,2��fN��̂2� . �37�

Taking account of the uniaxial symmetry of fN��̂� and using
Eq. �34�, we obtain the well-known phenomenological ex-
pression

�nx�1�nx�2�kBT →
R→� 1

4�

kBT

K

exp�− R/��
R

. �38�

IV. ZERO-FIELD ASYMPTOTES FOR NEMATIC
COLLOIDS

A. Colloid-nematic correlation functions

We consider the behavior of hCN�1,2� �or hNC�1,2�� at
large separations and zero field. As mentioned above, the
total colloid-nematic correlation function describes changes
in the local density and orientational distribution of the nem-
atic fluid �including changes in the local director and local
ordering� induced by a colloidal particle. For example, if a
colloidal particle is located at position 1, the local director at

position 2 can be defined as the direction d̂m�R12� that maxi-
mizes the expression �9�

S�R12, d̂� =� P2��̂2 · d̂��1 + hCN�1,2���N��̂2�d�̂2.

�39�

The asymptote of hCN�1,2� can be found from Eq. �21� be-
cause only the harmonics h221

CN �R�=h22−1
CN �R� are coupled with

the elastic correlations discussed in the preceding section,
and hence are responsible for long-range distortions. For our
model potential �7� an approximate colloid-nematogen direct
correlation function can be constructed from the analytically
known wall-nematogen result �20�. For a spherical colloidal
particle sufficiently large that curvature effects are unimpor-
tant, we have suggested the ansatz

cCN�R12,�̂2� � cWN�s = R12 − R̂12�/2, �̂ = �̂2� , �40�

where cWN is the wall-nematogen direct correlation function
found in Ref. �20� for any orientation ŝ of the wall with
respect to the field.

Using the explicit expression for c221
CN �R12,�̂2��c221

WN�s
=R12− R̂12� /2, �̂=�̂2� �see Eq. �20� of �20�� in Eq. �15�
and noting that j2�x�= x2

15�1− x2

14 + x4

504 −¯�, at zero field c221
CN �k�

can be expanded at large � and small k to obtain

c221
CN �k� →

k→0
− 4�

h221
WN�s = 	/2�

30zC
B��3 + O��2��k2 + O�k4� .

�41�

Here h221
WN�s=	 /2� is the contact value of the 221 harmonic

of the wall-nematic correlation function with the same inter-
action parameters �AC , zC� as in the colloid-nematogen po-
tential. At zero field the contact value, apart from a func-
tional dependence on zC	 and zN	 �see Ref. �20��, is simply
proportional to �AC. The limit given by Eq. �41� is valid for
very large colloids and sufficiently short-ranged anisotropic
potentials ���	 , 1 /zC , 1 /zN�. For this case the leading
term is proportional to �3 and one can neglect lower powers
of �.

The asymptote of the colloid-nematogen total correlation

function is defined by h221
CN �R12��Y21�R̂12�Y21

� ��̂2�+c.c.�. It
follows from Eq. �21� that

h221
CN �k� = c221

CN �k��1 − �N��Y21�2�c221
NN �k��−1. �42�

The expansion about k=0 can be found using Eqs. �41� and
�27� to obtain

h221
CN �k� →

k→0
−

4�

30

h221
WN�s = 	/2�

BzC
�3 + O�k2� . �43�

Inverting the Hankel transform �note that
4�

�−i�2

�2��3 �0
�dk k2j2�kR�=− 3

4�
1

R3 �, one finds

hCN�1,2� →
R→� 1

10

h221
WN�s = 	/2�

BzC

�3

R12
3 �Y21�R̂12�Y21

� ��̂2� + c.c.� .

�44�

For our model potential hCN�1,2� varies as � at zero external
field �see above discussions of B and h221

WN�s=	 /2��.
At this point a comment on the reliability of our analysis

is in order. The ansatz taken from the wall-nematic problem
is quantitatively accurate if ���, but requires a small cor-
rection for the zero-field case. The reason is that the “elastic”
correlation length in the nematic phase is infinite at zero
field. In Ref. �25� we show that a simple scaling of the ansatz
gives results numerically very close to the MSA solution of
the OZ equation for nematic colloids in the presence of ar-
bitrarily weak fields, including the zero-field case. For
spherical colloids the scaling corrects the asymptote of the
nematic distribution about a colloidal particle by a factor 5/4,
but it does not change the dependence of the asymptotes on
the colloidal diameter, or on the interparticle vector. The fac-
tor of 5/4 is not accidental and can be obtained analytically
in the limit of �→� �for details see Ref. �25��.

B. The colloid-colloid potential of mean force

Consider a pair of colloidal particles �not necessarily
identical� labeled by the superscripts �or subscripts� C and
C�. From Eqs. �21� and �22� we obtain
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h221
CC��k� − c221

CC��k� =
c221

CN �k��N��Y21�2�c221
NC��k�

1 − �N��Y21�2�c221
NN �k�

. �45�

At zero field and small k, Eq. �45� takes the form

h221
CC��k� − c221

CC��k� →
k→0

�N��Y21�2��4��2

�
h221

WN�s = 	/2�
zC

h221
W�N�s = 	/2�

zC�

�3��3

�30�2 k2

+ ¯ , �46�

where we have used Eqs. �27� and �41�. The contribution of
the m= �1 terms to the Fourier transform of the colloid-
colloid potential of mean force, −��CC��R�, is

�h221
CC��k� − c221

CC��k���Y21�k̂�Y21
� �k̂� + c.c.�

= �h221
CC��k� − c221

CC��k��2�1 +
�5

7
Y20�k̂� −

4

7
Y40�k̂��

= �
l=0,2,4

f l
CC��k�Yl0�k̂� . �47�

Although in k space three terms occur on the right-hand side

of Eq. �47�, at zero field the Y40�k̂� term alone determines the
asymptotic behavior of the potential of mean force in R
space. This can be seen explicitly from the finite-field analy-
sis given below �Sec. V�, and is evident from numerical cal-
culations �10�. Thus, using the inverse Hankel transformation

f l
CC��R�=4�

�−i�l

�2��3 �0
�dk k2jl�kR�f l

CC��k� for l=4 and noting

that k2Y40�k̂� becomes 105Y40�R̂� /4�R5 in R space, we ob-
tain

��CC��R� →
R→�8�

15

h221
WN�s = 	/2�

zC

h221
W�N�s = 	/2�

zC�

��N��Y21�2�

�3��3

R5 Y40�R̂� . �48�

Note that the spherical harmonics are normalized in such a

way that Y00��̂��1, in other words Yl0�R̂�=�2l+1Pl�R̂�. In
view of the zero-field scaling correction discussed in Ref.
�25� and mentioned above, we note that any correction of
asymptote �44� with a given factor results in a correction of
asymptote �48� with the same factor squared. Thus, the as-
ymptote of the potential of mean force should be scaled with
the factor �5 /4�2. Again the dependence on R, �, and ther-
modynamic state parameters remains unchanged.

We mentioned above that, at the MSA level,
�AN�N	3��Y21�2� is a function of zN	 at W=0, and h221

WN�s
=	 /2���. Given this, it can be seen from Eq. �48� that in
our model �CC��R� does not depend on K or S2, but only on
particle interaction parameters AC,N, zC,N, �, and 	. Given
these observations, for large colloids we would not expect
much change in the intercolloidal forces at large separations
throughout the whole region of stable nematic phase. It also
implies that experimental measurements of these forces
could provide information about particle interaction param-
eters, essentially at the molecular level. It is interesting to

note that the result �48� can be linked with the picture based
on the electrostatic analogy �4�. One can see from Eq. �48�
that colloids with “friendly” parameters �AC and AC� have the
same sign�, or with the same symmetry of surface interac-
tions, repel at 0° and 90° with respect to the director,
whereas colloids with “antagonistic” parameters �AC and AC�
have opposite signs� attract each other in these directions.

It is interesting to ask how well Eq. �48� can be mapped
onto real physical situations. If we consider a pair of identi-

cal colloids with R̂ parallel or perpendicular to the director,
the radial repulsive force has the form

FCC�R� →
R→�75kBT

	

h221
WN�s = 	/2�2

�zC	�2 ���Y21�2�

�6

R6 P4�R̂ · n̂� ,

where �=��N	3 /6 is the packing fraction. This expression
includes the �5 /4�2 correction. We calculate the force for the
parameters zC	=zN	=1, �AN=1, and �AC=2–4. These cor-
respond to interactions that decay on length scales on the
order of the nematogen dimensions, nematogen-nematogen
interactions of order kBT, and colloid-nematogen interactions
of order �2–4�kBT. We would expect these values to roughly
describe a “typical” nematic colloid. For these parameters,
�AN���Y21�2�=0.312 �Eq. �3.15� of Ref. �13� or Table I of
Ref. �20�� and h221

WN�s=	 /2�=0.69–1.38 �Fig. 3 of Ref. �21��.
Then at 300 K and R=2�, we find that, parallel to the direc-
tor, the colloids repel with a force �0.72–2.88 pN. This is
the same order of magnitude as the experimental value,
�1.2–1.4 pN, for a pair of colloidal particles in a quadru-

pole configuration at R=2�, and R̂ parallel to n̂ �see Fig.
4�a� of Ref. �7��.

Equation �48� is obtained taking account only of the
“elastic harmonics” ��m�=1� in expansion �19�. It is assumed
that elastic deformations of the director field are dominant at
long distances. This assumption becomes unsatisfactory near
phase boundaries, where fluctuations in local ordering are
large. In Figs. 1 and 2 we show the case of a stable nematic.
Here we plot the components of the potential of mean force
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FIG. 1. Components of the colloid-colloid potential of mean
force obtained using all harmonics in Eq. �19� and the asymptote
��4

as given by Eq. �48� for zC	=1, �W=0, and �=500	. See �26�
for other parameters of the model.
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��CC�R12� = �
l=0,2,4

��l�R12�Yl0�R̂12� , �49�

calculated numerically using all harmonics in Eq. �19�, and
compare with the asymptote �48�. One observes that the
asymptotic behavior sets in fast for zC	=1 �Fig. 1�. It sets in
more slowly for zC	=0.2 �Fig. 2�. In addition, the condition
zC��1 does not hold as well as for zC	=1, and the contri-
bution of lower powers of � in Eq. �41� is noticeable.

Comparing again with experiment, we note that the
present theory does not explain the angular dependence of
the colloid-colloid force shown in Fig. 4 of Ref. �7�. These
experiments show significant deviation from quadrupolar be-
havior at values of R as large as 2�. From Figs. 1 and 2, we
see that for the present model and theory the asymptotic
quadrupolar limit sets in rapidly and additional harmonics
are unimportant at separations for which significant devia-
tions from quadrupolar behavior are reported. We do not
know the origin of the discrepancy between our theory and
the experiments reported in Ref. �7�. It could possibly stem
from approximations in the theory, or perhaps our underlying
model is lacking some physical property that is important in
the experimental system. We plan to investigate both possi-
bilities.

C. Interactions at the van der Waals level

It is interesting to compare the zero-field expressions ob-
tained above with a simple van der Waals treatment. For the
present model �Eq. �7��, the van der Waals approximation
consists of setting the direct correlation function
cCN�R12,�̂2� to −�vCN�1,2� outside the surface of the col-
loidal particle, and to −1 inside the hard core �27�. For har-
monics of the direct correlation function this implies

c22m
CN �R� = �

�AC

5
exp�− zC�s12 − 	/2�� if R 


� + 	

2
,

0 if R �
� + 	

2
,�

�50�

c000
CN �s12�	 /2�=−1, and all other harmonics are zero. The

Hankel transform of Eq. �50� can be expanded at small k to
obtain

c221
CN �k� →

k→0
−

4��AC

5

�4zC
4 + 4�3zC

3 �2 + zC	� + ¯

240zC
5 k2 + O�k4� .

�51�

If one neglects lower powers of � and uses the condition
��zC

−1, it follows from Eqs. �45� and �27� that

h221
CC��k� − c221

CC��k� →
k→0�N

2 S2
2

�K
15�4��AC

5

�4

240zC
�

��4��AC�

5

��4

240zC�
�k2 + ¯ + O�k4� .

�52�

Next consider the equilibrium colloid-nematogen interaction
which determines the director orientation with respect to the
surface normal ŝ. For example, if AC
0 the director is par-
allel to ŝ. If we make the mean field assumption that the
equilibrium nematic distribution near the wall is just the bulk
distribution, then the average interaction energy expressed
per unit area is

U = − �
�+	/2

�

AC exp�− zC�s −
� + 	

2
��

��N��̂ · ŝ�P2��̂ · ŝ�d�̂ dŝ = − AC�NS2/zC. �53�

Then, following the method of the previous section, one ob-
tains a van der Waals expression for the asymptote of the
effective colloidal interaction

��CC��R� →
R→�UU�

K

�4

2

��4

2
3.84�

P4�R̂ · n̂�
R5 . �54�

We see that the van der Waals result gives the same angular
and R dependence as the MSA ansatz �Eq. �48��, but differs
in its � dependence, giving �8 rather than �6 for a pair of
identical colloid particles. The van der Waals approximation
is known to be valid if the interactions are weak, and if all
correlation lengths are finite. The second condition is clearly
not satisfied for bulk nematics at zero field, where � tends to
infinity, and we believe that this explains the different �
dependences. Indeed, in Sec. V, below, we show that the
leading � dependence changes from �6 at zero field to �8 at
finite field �� is finite�.

It is interesting to note that, for identical colloidal par-
ticles, Eq. �54� clearly resembles the leading term in Eq. �6�
of Ref. �3�. If one arbitrarily identifies the anchoring energy
V with the average colloid-nematic interaction energy U, Eq.
�54� differs from the result obtained for the weak anchoring
limit by a factor of 1.8. We stress that the two approaches are
essentially different. For example, in the elastic approach,
which is employed in Ref. �3�, the nematic is considered as
locally uniaxial with the local order parameter equal to that
of the bulk. In general, the van der Waals approach does not
need these assumptions. However, the similarity of the two
expressions does suggest that the weak anchoring limit is
roughly equivalent to microscopic theory applied at the van
der Waals level.
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FIG. 2. As in Fig. 1, except that zC	=0.2.
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V. ASYMPTOTES AT WEAK BUT NONZERO FIELD

Here we consider asymptotic behavior at weak but non-
zero field. At small k, the Hankel transform of c221

CN �R� can be
expanded in the general form

c221
CN �k� = − 4�/15k2�c4 − k2c6/14 + k4c8/504 − ¯� ,

�55�

where

c2n = �
0

�

dR R2nc221
CN �R� . �56�

It follows from Eq. �27� that at small fields

h221
CN �k� =

c221
CN �k�

�k2 + �−2�B2 . �57�

The inverse Hankel transform of Eq. �57� combined with the
infinite expansion �55� is

h221
CN �R� = −

1

4�B2

e−R/��3 + R/��3 + R/���
R3 �2c221

CN �k = �−1� ,

�58�

where we have used the relationship

�
0

�

dk j2�kR�
k2n

k2 + �−2 =
e−R/���3 + R/��3 + R/���

2R3�2n−4 . �59�

Asymptotically, the total correlation function takes the form

hCN�1,2� →
R→�

h221
CN �R��Y21�R̂12�Y21

� ��̂2� + c.c.� , �60�

where h221
CN �R� is defined by Eq. �58�.

We note that the formal expansion �58� is correct for col-
loids of any size. It is interesting that the R dependence
defined by Eq. �60� is exactly that obtained �3� for the direc-
tor distribution around a large spherical colloidal particle in
the limit of weak anchoring �see Eq. �10� of Ref. �3��. In our

theory the director distribution d̂m�R12� is obtained �9� by
finding the extremum of Eq. �39�. It can be shown �28� that

d̂m�R12� has the same R dependence at large R if h221
CN �R��A,

where A is the coefficient of the single-particle distribution
function defined in Sec. III. In this case local deviations from
the bulk director tend to zero, consistent with the analysis of
Ref. �3�, where the director distribution is obtained under the
condition of infinitely small deviations of the local director
from the bulk.

For large colloids we can again use the wall-nematogen
result as discussed above. For nonzero external field, the cor-
relation length is finite and the expansion �41� takes the form

c221
CN �k� = − 4�BC��,zC�k2 + O�k4� , �61�

C��,zC� �
h221

WN�s = 	/2�
30zC

��4/�8�� + �3 + O��2�� . �62�

Insertion of −4�C�� ,zC�B instead of �2c221
CN �k=�−1� into Eq.

�58� yields the asymptote of the colloid-nematic correlation
function at weak, but nonzero, external fields. It is interesting

to observe that the � dependence of hCN�1,2� depends criti-
cally on the presence or absence of an external field. If there
is no external field, �=� and the �4 term vanishes, leaving
�3 as the dominant term for large colloidal particles.

Following the method discussed above �Sec. IV B�, we
obtain the colloid-colloid potential of mean force at nonzero
external field in the form

��CC��R� →
R→�4�

�5 C��,zC�C���,zC���N��Y21�2��− 2k0�R/��

−
10

7
k2�R/��P2�R̂� +

24

7
k4�R/��P4�R̂�� , �63�

where

k0�x� = e−x/x, k2�x� =
3 + 3x + x2

x3 e−x,

k4�x� =
105 + 105x + 45x2 + 10x3 + x4

x5 e−x. �64�

The expression �63� has a limited range of validity. First, it is
assumed that changes in local ordering are not important at
long distances, allowing us to neglect the harmonics with
�m��1. Further, the expression is obtained for large �, but �
must also be sufficiently smaller than the correlation length �
that the k expansions can be truncated at k2.

Despite these restrictions, Eq. �63� leads to several impor-
tant observations. We see immediately that only the quadru-
pole term survives as �→�, consistent with the statement
made above �Sec. IV B�. Also, as discussed earlier, in this
limit the potential of mean force behaves as �6. Significantly,
we see that in the large � limit the � dependence shifts from
�6, when � is infinite, to �8 if � is finite. We note that the
correlation length can be finite in experimental nematic
samples even without application of electric �or magnetic�
fields, for example through interaction with walls or sur-
faces. Finally, Eq. �63� shows that at nonzero field the sym-
metry of effective interactions cannot be described as qua-
drupolelike even asymptotically. One can see that the
quadrupole interaction transforms into a superposition of
screened multipoles when the correlation length is finite.

Components of the effective colloid-colloid potential �49�
at finite field are plotted in Fig. 3. Compared with Fig. 2, we
note that �4�R12� becomes shorter ranged at finite field, as
expected, but that the range of �0�R12� and �2�R12� is much
increased. Note that, for the case shown, ��51	 and is al-
most ten times smaller than �=500	.

VI. CONCLUSIONS

In this paper, we have analyzed asymptotes of correlation
functions in nematic colloids in an effort to bridge the gap
between phenomenological results and microscopic theory.
We have shown that asymptotes of the bulk nematogen-
nematogen correlations are exact analogs of the correlations
of director fluctuations first predicted by de Gennes �19�. Our
approach, based on a general solution of the Ornstein-
Zernike equation, allows explicit microscopic calculations of
the density and orientational profiles, as well as of potentials
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of mean force for large colloidal particles in nematic media
at different length scales. Here we have concentrated on their
asymptotic properties. We show that the electrostatic analogy
postulated in Refs. �2,4� results from the fact that the corre-
lation length �, the so-called magnetic coherence length, is
infinite at zero field. In this limit the nematogen-nematogen
pair correlation decays as 1 /R, in analogy with the Coulom-
bic interaction.

In contrast to phenomenological approaches, the molecu-
lar theory does not assume specific boundary conditions �an-
choring� at the surface of colloid particles. Instead, anchoring
appears naturally through the colloid-nematic correlations.
For the model and molecular parameters we employ, the re-
sulting anchoring appears to be realistic; it is neither rigid
nor particularly weak �9�. We find that the effective long-
range colloid-colloid interaction does not change �or changes
only little� throughout the region where the nematic phase is
stable.

We show that a simple van der Waals treatment of the
nematogen-colloid direct correlation function yields a

colloid-colloid potential of mean force that resembles the
phenomenological result obtained in the limit of weak an-
choring �3�. In particular, at large distances it varies as �8,
where � is the colloidal diameter. The more sophisticated
MSA ansatz approach predicts a �6 dependence consistent
with the result obtained by imposing rigid boundary condi-
tions at colloidal surfaces �2,4�. We believe that the reason
for this discrepancy lies in the fact that the van der Waals
approximation does not take account of the fact that the cor-
relation length � is infinite at zero field.

We have also considered the weak- but nonzero-field
limit. We show that the quadrupole interaction found at zero
field transforms into a superposition of screened multipoles
when the correlation length is finite. Another interesting fea-
ture that emerges from our analysis is that, in the large-�
limit, the � dependence of the potential of mean force shifts
from �6, when � is infinite �zero field�, to �8 if � is finite.

Finally, we note that the present technique, based on our
ansatz and the MSA wall-nematic solution obtained for an
arbitrary orientation of the wall with respect to the nematic
director, has some additional advantages. The same analyti-
cal solution �with small adjustments� can be used for physi-
cally different systems, such as nonspherical colloids, col-
loids with a nonuniform distribution of surface surfactant
�patterned colloids�, colloids trapped at interfaces, and nem-
atic droplets.
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